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Abstract—The paper deals with the effective linear thermal properties of composites. Using a dynamic
method, bounds are derived for the effective conductivity and specific-heat of matrix/inclusion composites
containing compact inclusions. It is shown that such bounds remain finite, which establishes the principle of
an upper {Jower) limit on the attainable overall conductivity (resistivity) irrespective of how large (small)
the inclusion conductivity may be compared with the matrix conductivity. Bounds are also derived for a
variety of classes of disordered composites, including the particular class discussed recently by Kréner[2],
the so-called materials of grade (@,%,n). Altogether, bounds are derived for 16 different classes of
materials and the statistical information pertaining to each class is given.

1. INTRODUCTION

In a recent paper[1], a dynamic method has been developed which led to estimates of the
effective moduli by a method that employs simplifying assumptions akin to those of Voigt and
Reuss in the elastostatic theory. In this paper, this method is employed to determine the
effective linear thermal properties of multiphase composites in terms of volume concentrations
and phase conductivities. Each phase is assumed to be isotropic and homogeneous and the
mixture as a whole is also macroscopically homogeneous and isotropic. Two types of
composites are considered: (a) matrix/inclusion composites and (b) heterogeneous mixtures
where none of the phases is a continuous matrix. We show that for class (a) composites.
assuming inclusions of compact form, both bounds remain finite in the limit of thermally rigid
inclusions (or cavities), thereby establishing the principle of an upper (lower) limit on the
attainable overall conductivity (resistivity), irrespective of how large (small) the inclusion
conductivities may be in comparison with those of the matrix. This is considered in Section 3.
In Section 4, we derive bounds for disordered composites by a method similar to that given in
[1]. We show that if the diffusivity’s dependence on wave-number is first established, one
obtains optimum bounds on the local effective thermal properties Kroner's[2] recent
classification of composites by degree of disorder is generalized to include disordered composi-
tes of mixed grade (with respect to disorder). This broader framework is found to contain
bounds for a large class of composite materials hitherto not considered. Among such
composites, we find a class of composites consisting entirely of cells, with each cell containing
foreign impurities in the form of inclusions. The method leads to a total of 16 sets of bounds for
various composite classes. The classes of materials associated with these bounds are discussed
in Section 5, where appropriate statistical information is adjoined to each set of bounds.

2. METHOD OF ANALYSIS

Consider a mixture of N phases, each phase being homogeneous, isotropic, and of arbitrary
geometry. The fractional volume of a phase is given by a, = V,/V. The mixture as a whole is
both isotropic and homogeneous. The phase conductivitics are denoted by K,, the specific
heats by C, and the diffusivities by y, = K,/C. Let Q7 and T,” denote, respectively, the
heat-flux and temperature gradient in the rth phase and let H; represent a heat-flow vector in
the rth phase. The heat-flow vector H; is to be defined below. One can then define an effective
conductivity K* and an effective specific-heat C* through the two relations

N -
(Q)=(oH;/at)= — K*(T,;)=— §=:1 Ka T,/
2.1)
N -
(Hy)=C*(aTlaty= 2, Ca,T"
r=1
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where a dot denotes a partial time derivative and the brackets () designate mixture averages
taken over a representative volume and over a time-interval much longer than some charac-
teristic cell time. The overbars in (2.1) refer to phase averages. Suppose that the phase averages
are proportional to a prescribed temperature-gradient T and a prescribed rate T°, both applied
to the surface of a representative volume element. Let

[T, T'1=[A.T"; B,T] (2.2)

where A, B, are factors of proportionality that are subject to the constraints

> I[A.Bla=1.

r

(2.3)

The effect of the assumed linear proportionality is that the following analysis is necessarily
restricted to linear properties inasmuch as, inherent in this assumption, is the independence of
the effective properties from the applied surface temperature-gradients or temperature-rates.
With this understanding, we obtain upon substitution of (2.2) into (2.1)

K*(T9I> = z K,A,a,To,,
C¥(T)=2 C,Ba,T° (2.4)

Since the mixture averages are equal to the applied thermal gradients and thermal rates, by
virtue of relations (2.3), we obtain immediately from (2.4) the effective properties

K*=> K.Aa,
C*=Y CBa, 2.5

s0 that if the proportionality factors are known, the effective properties can be determined from
(2.5). By following the same procedure one can formulate the inverse relations

(T,)=—R*(H,)=- Ra,H/
(T)=m*(H,)= > ma,H}; (2.6)

where m, = 1/C, and R, is the thermal-resistivity. Again, introducing proportionality factors A,,
B, and requiring that (H,)= H? and (H,;) = H?;, we obtain

R*=3 RAa,
m* =, m,Ba, Q.7

the A,, B, being subject to the constraints
> 1A, B/la,=1 2.8)

which are similar to (2.3). However, in the foregoing relations the temperature-gradient and
temperature-rate (or H; and H;;) are not entirely independent of each other. Rather, they are
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related by a kinematical condition to be derived next. Consider the isothermal surface

T{xc(£(t), 11=C, 2.9

C being a parameter and £(¢) the position-vector of a point on the isothermal surface. The
equation following the motion of the isothermal surface is

DT _ _oTdy  oT
Dt =0 ox, dt ot (2.10)

where dx,/dt is the speed of displacement of the isothermal surface in the direction of the
normal to the surface. Since (2.10) is also valid in each phase of the composite medium, the
relevant kinematical relation in the rth phase assumes the form

aT"1ax; + v (x) T (i x,) 2 =0 2.11)
where v/ is the normal to the moving isothermal surface in the rth phase, (x,/7,)" is the
corresponding speed of displacement, and 7, is a characteristic time associated with the rth
phase. From (2.11), the squared speed-of-displacement is given by

xdn=|TPIT, P (2.12)

so that, given x,, eqn (2.12) defines the characteristic time 7, Taking now averages of (2.11) over
each phase and using the decompositions

'r—_ o r__ =1
Vi =V Vi

T =77 - T, (2.13)

multiplying by the fractional volumes a, and summing over all phases gives
& =r X —rr 12 'refer 12 _ 1npwr
2}1 aT ,,-+21 5 Ta (rlx)" = - 2 aw; T (0x)"* = = (nlx.)""R}. 2.14)
Introducing into (2.14) the proportionality factors A, B, we obtain
(T,)+ 3, Bad (rlx) ™ (F) = = () (R}) (2.15)

where (R;})=Z2 Ra, It is immediately apparent from (2.15) that necessary and sufficient

conditions for the existence of mean isothermal surfaces in the composite medium moving at
the effective speed-of-displacement (x,/r,)'? is that

(R)=0 and 5 =v)(xl7,)"" (2.16)
where »] is the normal to the mean isothermal surface (about which the actual isotherm
fluctuates) and r is a characteristic time of the mixture as a whole. In view of (2.16), eqn (2.15)

takes the form

(T,s)+ (2 a,B,/x,"’)r”’v}"<T'> =0 2.17)

which is the effective kinematical relation for the mixture as a whole. From (2.17), the squared
speed-of-displacement is given by

-2
x*ir=(Z Ba/x'™) Ir=KDRIT @19)
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so that if the effective diffusivity is known, eqn (2.18) defines the mixture characteristic time 7.
Note that the condition (R))= 0 in (2.16) will be satisfied subsequently by proper assumptions
about the temperature field. By exactly the same procedure, and considering the motion of a
surface of constant heat-flow, we obtain the complementary equation

(Hay+ (S Aalx™) o (H) = 0 2.19)

Equations (2.3), (2.5) and (2.17) apply when surface temperatures are specified while (2.7), (2.8)
and (2.19) apply when the heat-flux is prescribed. Both sets form the basis of the following
analysis.

3 EFFECTIVE PROPERTIES OF MATRIX/INCLUSION COMPOSITES

We consider in this section composites in which inclusions of compact form are distributed
in a matrix. The inclusions do not deviate appreciably from the spherical shape and do not
touch each other. They may be harder or softer than the matrix and we distinguish accordingly
between these two cases. Although the results apply to composites of any number of phases, it
will be useful for clarity, to focus on a two-phase composite with conductivities K, K,(K; >
K5), specific heats C,, C5(C; > () and fractional volumes a,, a,. We shall seek to determine the
effective properties in terms of the given information, namely, the phase properties and
fractional volumes. In principle, these could be determined if all the proportionality factors in
eqns (2.5) and (2.15), or in (2.7) and (2.19) were known. However, the constraint conditions (2.3)
or (2.8) are not sufficient for this purpose, so that some simplifying assumptions as to
temperature gradients and temperature rates must be introduced. Using this approach, bounds
are derived on the effective conductivity and specific heat. In deriving such bounds, the basic
idea is that given two different intervals, corresponding to applied surface temperatures or
heatfluxes, the effective conductivity can lie only in the intersecting interval (common to both
intervals) since then, and only then, would the effective conductivity be independent of the type
of boundary condition, as it should. Hence, our aim will be to make the two intervals coalesce
into a single interval and thus such an interval necessarily becomes a bounding interval for the
effective conductivity.

3.1 High conductivity inclusions in a low caonductivity matrix

The composite to be considered consists of high conductivity inclusions of compact form,
not touching each other,t and embedded in a low conductivity matrix. Let us first consider
relations (2.7), (2.8) and (2.19). The simplifying assumptions to be introduced must take into
account that in the limiting case of perfectly conducting inclusions (K, — «) the bounds must re-
main finite. A related consideration is that the temperature gradients in the inclusions must tend
to zero as K~ w, although the heat-fluxes remain finite. Taking also into consideration that at
phase interfaces the flux must be continuous, a suitable assumption is that the flux is the same
in both phases, which is equivalent to Reuss’ approximation of constant stress in elastostatics.
It follows from (2.7) that A} = A; = 1. Thus eqns (2.7) and (2.19) yield

R*=2Rrar=1/KR Kr=(A\/K,+ a)/Ky)
m* ="y m,Ba, (3.1)

vi(H) (rIxg) P +(H,) =0,  (Vx)r = (@/V(x)+ alvVix)™

and the factors B, are still to be determined. Consider now relations (2.5) and (2.17) which hold
when surface temperatures are prescribed. Since the temperature gradients in the inclusions

This assumption, together with assumption of compact inclusions implies a finite temperature gradient in the matrix.
Hence, the effective conductivity can never attain an infinite, or zero value, when the inclusions are thermally rigid or
cavities.
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must tend to zero as K,—x, the assumption of uniform gradients in both phases is inad-
missible. However, continuity of temperatures must be maintained at phase interfaces so that
the assumption of equal temperature rates in both phases is suitable. It follows that B, = B, =1,
so that from (2.5) and (2.17)

K*= 2 K,A.q,

C*= E Crar = Cv (32)
(T.)+ v (T alxr)? = 0.

The problem now is to determine B in (3.1); and A, in (3.2),. Although K* in (3.2), is the exact
effective conductivity if the A, are exact, we shall here invert the problem by requiring that K*
be merely the inverse of Kx™' and determine the approximate A, accordingly. To this end,
multiply (3.1), and (3.2);. Hence

K*R*=1= K,Aa,/Kg (3.3)

whereas from (2.3)
A,a|+A2a2= 1. (34)

Thus both A; and A, can be determined.t By applying a similar argument to eqns (3.1), and
(3.2), we obtain

B,lal/Cl + B3a,/C,=1/C,
Bia,+ Bya,= 1. (3.5)

These can be solved for B} and B5. It follows from (3.1) and (3.2) that K* = K on one hand,
and K*C,(\/(x))x> on the other (using the definition K*/C* = x*). The latter conductivity
reduces in the steady-state limit C; — C,—0 to (\/(K))z’.1 Hence, irrespective of the boundary
conditions the effective conductivity is given either by Kg or by (\/(K))z’. This duality implies
that the actual effective conductivity cannot be uniquely determined. Rather, it must lie
somewhere in the interval

Kr < K*<(VK)Y (VK)g = (a,/V/(K) + a2 V(K2) . (3.6)

Since this interval is one and the same for either type of boundary condition, it is necessarily a
bounding interval for the effective conductivity.§ The limiting case K;—>® is of particular
interest. Let K, > in (3.6),

Kyla,< K* < K,lay, 3.7
and thus both bounds remain finite, as anticipated. The factors A, are also of interest. These are

tIn a multiphase composite it is necessary to assume that the gradients in all phases except phase “‘one” are equal to
those of the matrix, phase “two”. The bounds are then of the same form as the bounds for a two-phase composite.

$The meaning of the assumption C,- C,—0 is best understood in reference to the equation of heat-conduction
Div(K Grad T)= C 3T} at. If the temperature is slowly varying it is permissible to ignore “thermal inertia” effects by letting
C-0 which leads to the equation Div(K Grad T) = 0, governing the quasi-steady field.

§The reader who might consider the present proof insufficiently rigorous, may view the bounds (3.6) as mere estimates.
However, subsequent results show, independently of the present proof, that Kz < K* < Kr(K,"?/Kz'?) are rigorous
bounds (see eqn 4.21,) for a mixture of lengthy and compact inclusions distributed in a matrix, whereas (yK)stK‘ <
Kr (Ky"Kz"?) are rigorous bounds (se¢ eqn 4.212) for lengthy inclusions. It follows that (v/K)’ is a dividing line between the
intervals for lengthy and compact inclusions and thus Kz <K* <(v/K)&® are necessarily rigorous bounds for compact
inclusions. This constitutes an independent proof of such bounds. Similar remarks apply to the bounds (3.15).
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given by
Ar={1+a)K /K- DI Ary=[1-a,(1- Ko/ KT (3.8)

In the limit K, >, we have A;=0 and A,=1/a,. The corresponding average gradients are
VT,=0 and VT,=(VT)a, as expected. Analogously, relations (3.1) and (3.2) lead to the
effective specific heats C* = C, and C* = Kr/(\/x)r’. The latter reduces in the steady state
limit K, - K,-0to C*=C, and C* = (\/C),”. Hence the effective specific heat is bounded by

VO 2ZsC*< (.. (3.9

3.2 Low conductivity inclusions in a high conductivity matrix
This configuration is obtained from the previous one by reversing the roles of the phases
while the fractional volumes are kept unchanged. In deriving bounds for this case, it must be
taken into account that in the limit of cavities (K,—0), both bounds must remain finite. Hence
the assumption of equal fluxes in both phases would be unsuitable since continuity at interfaces

would imply zero flux everywhere. For the present purpose it will be useful to re-arrange (2.17)
and (2.19) in the alternative forms

(2 Arar(Xr/T)”2> VT +H(T) == a,(r/x,) V" VT"

(H)+ 2 Bla,(xIn)"v¥(H,;) = - 3 a,(x/7)"*v/H},. (3.10)
To eqn (3.10), we adjoin relations (2.5), or
K*=3> K,Aag,, C*= CBa, (3.11)
whereas to eqn (3.10), we adjoin relations (2.7), or
R*=3 RAa,; m*= >, m,B.a,. (3.12)

We assume next that the gradients are the same in both phases, so that A, = A,=1. On the
other hand, with respect to (3.10), and (3.12) we assume that the divergence of H; is equal in
both phases so that B; = B; = 1. Relations (3.10)-(3.12) yield then

K*=Y Ka,=K,. C*=Y CBa, K,=Ka+Ka,

VI I*VT)+(T)=0 (3.13)

and
R*=2R,A',a,: m*=2 ma, = 1/Cg Cr = (a1/Cy+ ay/ Cy) ™"
(Hiy+ (/(xIT)ovi (H;j) = 0. (3.14)

It can be shown by the previous reasoning that the effective conductivity, either from (3.13) or
(3.14), is given by K* = K, and K* = (\/K),%. The actual effective conductivity is thus bounded
by

WK)}<K*=<K,. (3.15)
Consider now the limiting case K,—0. It follows from (3.15) that

Kia?<K*<K,a, (3.16)
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Thus both bounds remain finite as anticipated. The proportionality factors A; are given by

Ai=[1-ax(1- Ky/K )]
G.17
Ay=[1+ay(K /K- 1)].”!

Thus in the limit of cavities (K;->0), these reduce to Al =1/a, and A;=0 so that the average
phase fluxes are Q,={Q)/a, and Q,=0, as it should. It can also be shown, on taking the limit
R, - R;—0 that the effective specific-heat is bounded by

Cr<C*<(VO)R. (3.18)

4. SYSTEMATIC DERIVATION OF BOUNDS FOR
DISORDERED COMPOSITIES

The bounds (3.6) and (3.15) represent special cases of a more general set of bounds to be
derived in this section for disordered composites of much more general topology. In this
derivation, we follow Kroner’s recent systematic theory[2]. According to Kroner’s theory a
material is said to be of grade (%, », n) if it is (statistically) perfectly isotropic and homogeneous
and if the information with respect to statistical disorder has been verified only up to
correlation functions of order n. In this classification, Hashin and Shtrikman’s bounds cor-
respond to grade (, «, 2) and hence an intrinsic assumption is that the distribution of thermal
conductivities and domain shape statistics are uncorrelated of grade 2. Our object, in this
section, is to derive bounds by a systematic procedure that allows a classification of composite
materials analogous but more general than Kroner’s classification. Assuming perfect statistical
homogeneity and isotropy we show that materials can be classified as of mixed grade ij(n) with
respect to statistical disorder. The advantage is that this classification contains general
matrix/inclusion structures as well as structures with cell domains, in addition to the special
class of materials considered by Kroner[2], whose underlying assumption is that moduli and
topology are uncorrelated. Besides, we find according to this classification, a new class of
hybrid composites consisting of M inclusion phases distributed in N — M other phases whose
topology may consist of cell domains or matrix/inclusion domains. In this manner, the present
classification encompasses a total of 16 different classes of composite materials, for which
distinct bounds are derived.

The present analysis is similar to that given in [1}, whereby the diffusivity’s dependence on
wave-number is first established. Once such a relation is available, the resulting constitutive
thermal relations are found to be nonlocal and furthermore, in the quasi-steady case, these lead
to bounds on the effective conductivities. The point of departure are the constitutive relations
(2.1) and the kinematical condition (2.17)

(Hl) == 2 KrArar<T: ')
(H,)=Y3 CBalT) 4.1)
(T)+ 2 Ba N/ (rlx) vi{Ty=~vT" a,\/(7lx,).

For present purposes it proves convenient to write (4.1) in an alternative form by utilizing the
kinematical conditions in each phase and the fact that the diffusion-speed (\/x,/7) can be
expressed in the alternative forms

V) = [Kd L, LIC, VK )IV(C), WP (V) PV 4.2)

where I, = (K,C,)"? is defined as a “thermal impedance”, and the parameter 8 ranges continu-
ously from zero to 1/2. Using (4.2), eqns (4.1) can be written in the alternative form
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(H)-Y LBav{T)=2 Lay'T"
(H)+Y LAav(T,)=- LayvT.’ (4.3)

S Aa V) Vi) K. L' L G VK, VCHKT,)
+ 2 Ba, V., (vx)? L. K7, C. L', \V(C), WK) 1w (T)=

where R, depends only on the deviations »,"T". It is not difficult to show that corresponding to
(4.3) are the inverse relations

<Tl> (2 Brar/I)Vl PI” ZarV,rH
(T)+ (z A:a,/z,) v EY =~ arHTIL (4.4)

2 AV, Wx)t L K7L G LT VG (VK)TKH)

+ 2 Bia vV, Vx)'h K. L7, L, ¢ VK, VG 'vi(H,)=Si

where S' depends only on the deviations »H'/;. To determine the proportionality factors in
(4.3), we assume that the temperature gradients and rates are the same in all phases, which
means that all concentration factors are unity. Thus

I*=Iv. I,,, =I|a|+Izaz (45)

from the first two relations (4.3). From the third relation (4.3), we obtain the alternative
effective diffusion-speeds:
\/(X*/T)z[Ku/Im Iv/Cv’ (\/K)v/(\/c)vy (\/(X)I—B)v(\/(x)ﬁ)ﬁ" (\/(X)I_B)R(\/(X)B)vs
WV(K)RIW O, IrlCr,  KglIRl (4.6)

Similarly, assuming in (4.4) that the flux, the divergence of H; are the same in all phases, all
proportionality factors are unity and thus

IF=Iy, Ir=(a/li+alb)" (4.7)

whereas (4.4); leads to the set (4.6) of effective diffusion-speeds. The problem now is to
determine wave-numbers appropriate to each speed in the set (4.6). This is accomplished by
considering the kinematical conditions belonging to each pair in (4.6). For instance, the equations
associated with the outer pair are

(T,l)+ V;k(T)/\/(Xmaxlf) =0
(Ti)+ v {TYN (Xin T) = 0 (4.8)
where V/(xmax) = Ko/, and v/(xmin) = Kg/Iz. Let T,; be of order Ty/l and T of order T/,
where T, is some representative temperature, [ is a suitable length scale and 7 a suitable
time-scale. Define the “outer” and ‘‘inner” time scales
To= le Xmin
7, = d*/ Xmax (4.9)
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where d is, for instance, a representative dimension of an average cell. Introducing (4.9); into
(4.8), and (4.9), in (4.8), it is found that for the two terms T and T,; to be of equal order it is
necessary that

J/’o = \/(Xmin/Xmax)

This defines therefore two dimensionless wave-numbers that satisfy the reciprocity relation
(dllo)(dll) = 1. (4.11)

By applying the same procedure one can define wave-number pairs belonging to the inner pairs
of diffusion-velocities in (4.6) so that the diffusion vs wave number relation can be constructed
as shown in Fig. 1, by erecting the diffusivities given by (4.6) at the corresponding wave
numbers as determined from relations similar to (4.10). Note that because 8 is continuous, the
diffusivity curve is continuous within the central range shown by a solid line in Fig. 1. This fact
is crucial to the subsequent derivation of an infinite set of bounds. We prove next that the
thermal “impedances” I, and Ir derived from the systems (4.3) and (4.4) are actually upper and
lower bounds on the effective thermal impedance. Once this is proved it follows automatically
that the effective thermal conductivity (K" = I*® (/x*/7)) is bounded by

LV (x*IT) <K< Lv(x*7), (4.12)

where \/(x*/7) is given by the set (4.6). The proof starts from the simple Voigt and Reuss
bounds

Kr<Kf <K, 4.13)

Dividing (4.13) through by v/(x*/7) (given by 4.6), we obtain immediately the following sets of
bounds on the effective thermal impedance

I <(I,, K,C,/1,, K,(V O (VK)o K/ (V () ™) (WP IR, Kl V(X)) )V (0P,
K, (v C)rl(VK)g, K,CrlIr, K,Irl Kg]
= [Ig, KrCrlIr, Kr(\/ C)rl(V K)gr, Krl(V(30)' )r(V(X)P)o, Kel(V (X)) (W (X))

Kr(\/C),I(\/K),, KrC\I1,, Krl,/K,] (4.14)
~J [ .
N xRy, (xByq
\ ‘ ‘—(xﬁ)v(x"B)R
2
*X g{’, > [+ 4 T\\T~~_‘_
xS P> 1 1 1t T E—
' T T
g L€
o o
2 ¢ %
% T .5 £
% & | E
o [ T I
0 | 2 d/L 3

Fig. 1. Diffusivity vs wave-number.
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and thus

L=< <] (4.15)

represent the narrowest, and thus the optimum bounds of the entire set appearing in (4.14). It
follows therefore that the bounds (4.12) also represent optimum bounds on the wave-number-
dependent effective conductivity. Taking the limit C;—C,—0 we obtain the following sets of
bounds for the effective quasi-steady thermal conductivity

K <[K,, (VK (K" P2, (K*¥)g, (VK), (KPP (K" PP, (v K) Krl(V K)R]
= [Kg, (VK)r(K'P) (K, (V K)r(KP?)R(K' ), (VK)RKHVK), ] (4.16)

Since each upper bound in (4.16) can be associated with any of the four lower bounds, we
obtain in this manner sets of mixed bounds which are best arranged in a 4 X 4 matrix form
K» Kin K
ety |21 2 n 24
= Ki* K}:z Ki‘:’ K’z": (@417
Ko Ko Ka Ku

where

Kr<K}<K,

WEKip(KFH, (K", < Kh <K,
(VK)e(KT#?), (K#)p <Kl <K,
(VEKRKJVK), <KT <K,

(4.18)

Kr<K5 <(VK)(K"™P),(K¥?)g |

(VK)R(K#), (KPP < K < (VK) (K" ™7),(K*)g
(VK&K (KB < K5 < (VKDL (K7, (KP) |
(VEKIRKI(VK), < K3 < (VK)(K"P?),(K#)g

(4.19)

Kr < KH <(VK),(KPY), (K2, |

(VEK)R(KF?), (K" < K3 < (VK) (K#), (K TP")g |
(VEK)R(K"™2),(K¥)p < K5 < (VK),(K#?),(K"™P7),
(VEK)RKJVK), <Kt <(VK).(K#?) (KPP, |

(4.20)

Kr< K3 <(VK) Kel(VK)r

(VK)R(KP?), (K" < K5 < (VK)Kel(VK)r

(VEK)R(K"™),(K#)g < K33 < (VK).Kp/(VK)r
Ki<WK)LKel(VK)z or Ki=(VKRKJ(VK),.

4.21

The bounds K; in (4.17) as well as K;; and K, are of particular interest. To establish a
correspondence with Kroner's classification note that the Kj, are functions of the continuous
parameter B, which ranges from zero to 1/2. There is therefore no loss in generality if B is
related to the order n of the correlation functions in Kréner’s theory. For example, these may
be related in the alternative ways

B.=12-1/n or y,=1/n n=2 (4.22)
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where n =2 corresponds to 8 =0 (or y = 1/2) and n = » corresponds to 8 = 1/2 (or y =0). The
first relation (4.22) is then used in the second terms of the set (4.16) while (4.22), is used in the
third terms. In this manner the bounds (4.17) become functions of n and thus the connection to
Kroner's grade («,®, n) materials is established. Note, however, that in the present
classification the single term K 3(n) contains Kroner’s bounds. In particular, K (2) correspond
to Hashin and Shtrikman’s bounds. On the other hand, all other terms in the matrix (4.17)
represent new bounds which will be termed bounds of mixed order. The classes of materials to
which each set of bounds belongs are discussed in Section 5.

5. DISCUSSION OF BOUNDS

The bounds (4.17) belong to various classes of materials. Our aim, in this section, is to
establish a correspondence between each bound K and the class of materials to which it
belongs. Let us start with the simplest bounds K}, which are the well-known Voigt and Reuss
bounds. These are the worst bounds since the only information are the phase conductivities and
volume concentrations. To discuss the other bounds it is convenient to define the following
hybrid material: Suppose a composite of N phases (N >2), of which M phases (M <N -1)
are inclusions distributed in the other N — M phases. Suppose now that the further information
is given that the M inclusion phases are distributed in N — M phases of unspecified topology. If
the inclusion conductivities are, on average, lower than the conductivities of the N — M phases,
the relevant bounds are K}, and if they are higher, on average, the relevant bounds are K o
Suppose, now, that M = 0 and that distribution of conductivities and domain shape statistics are
uncorrelated, then the relevant bounds are K 3(n). The bounds’ dependence on n defines in this
case the class of materials designated by Kroner[2] as uncorrelated of grade (0, », n). Thus, the
bounds K%(2) correspond to Hashin and Shtrikman’s bounds,t while K5(3) corresponds to
Kroner’s grade (, =, 3) bounds. Note that in this class the narrowest bounds, from (4.19),, are

(VEK)r(K"™), (K" < KB(®)< (VK) (K"),(K")g. (5.1)

These correspond to grade (w, »,©) materials in Kréner’s classification. The interesting point
here is that the bounds (5.1) do not coincide even with perfect disorder, which should not be
surprising since the topology in this case is not specified. That is to say, it is not known yet
whether the composite domains are cells or have a matrix/inclusion structure. The bounds (5.1)
are plotted in Fig. 2 for a ratio K,/K,= 100 and it is seen that the bounds K>() are much
narrower than K7(2). Suppose next that the M inclusion phases are distributed in N — M
phases which consist entirely of cells. Assuming further that inclusion conductivities are, on
average, lower than those of the cell phases and that lengthy inclusions are, on average, of
lower conductivity than compact inclusions, then the relevant bounds are K. If, on the other
hand, inclusions are of higher conductivity than the cell phases and furthermore if lengthy
inclusions are of higher conductivity than compact inclusions (on average), the relevant bounds
are K3,. Suppose, now, that the information pertaining to K75 or K3, is restricted by the fact
that all inclusions are lengthy. Then the relevant bounds are either K> or K 3. Suppose, next,
that M = 0 so that all composite domains consist of cells. Then the relevant bounds are K3;(n),
given by (4.20);. Note that the worst bounds belonging to this class as K 33(2), which are precisely
the best bounds in the class K 3:(n), viz. K (). The main point of interest in this class of bounds is
that the K3:(x) bounds coincide to give the exact effective modulus.}

K3 = (VK),(VK)r (5.2)

This result is entirely plausible since the topology in this case is well specified. The bounds
K 3(n) are plotted in Fig. 3 for a ratio K,/K,= 100.

Consider, now, the case where the M inclusion phases are distributed in N — M phases
which have a matrix/inclusion structure. Note that the M inclusion phases may be embedded

1The correspondence is only in the sense that the present bounds are numerically essentially the same as Hashin and
Shtrikman’s bounds for sufficiently small ratios of phase conductivities. However, the structure of the formulae is entirely
different.

$This modulus corresponds to the modulus obtained by the self-consistent method.
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Fig. 2. Bounds K »(n) for disordered composites (conductivities/topology uncorrelated).
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Fig. 3. Bounds K3(n) for disordered composites (cell domains).

either in other inclusions or in a matrix phase. In either case, the bounds belonging to this
information are LJ, given by (4.21),. These bounds state only that the effective conductivities
must be either greater than (\/K)gK,/(\/K), or less than (\/K),Kz/(\/K)g. This dichotomy
reflects the fact that the given information does not specify which of the phases is a matrix.
Hence, by adding that the inclusions are, on average, of lower or higher conductivity than the
matrix, the relevant bounds are K3 and K7, respectively. Note that the upper bound in K3, or
lower bound in KJ; are not valid since they violate the inequalities (4.16) by being lower
(higher) than the lower (upper) bounds. So that K3 =(VK):K./(\W/K), and Kh<
(VK).Krl(\/K)g, correspond to the above information. Finally, if we add the further in-
formation that lengthy inclusions are, on average, of lower conductivity than compact in-
clusions the relevant bounds are K i, whereas if they are of higher conductivity, the relevant
bounds are K3;. If we now restrict all inclusions to be lengthy then we obtain the narrower
bounds K3, or K. Suppose, now, that instead of lengthy inclusions we restrict all inclusions to
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be compact. Then we obtain the bounds (3.6) and (3.15) given in Section 3. Note also that the
upper bound K3, is not valid if (\VK).2 < (vV/K)zK,/(\/K,). This occurs when

a,<a¥, where af=[1+(K,/K)"™" (5.3)

The effective conductivity in this case must nevertheless fall within the larger bounds K T for
matrix/inclusion composites, so that for a;<a’ the bounds K3 must be replaced by K. The
same applies to the lower bound (3.15) so that for a,<a! the bounds K7 apply to all
matrix/inclusion composites irrespective of whether the inclusions are lengthy or compact, or
both. It can be shown by an analogous argument that for a,>1-a} the lower bound K3
ceases to be valid and so does the upper bound in (3.6). Hence the bounds K% apply to all
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Fig. 4. Bounds for matrix/inclusion composites. (K f—lengthy and compact inclusions; KCI compact
inclusions; K% lengthy inclusions.)
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Fig. 5. Bounds for matrixfinclusion composites. (K3 lengthy and compact inclusion; K*c2 compact
inclusions; K& lengthy inclusions.)
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matrix/inclusion composites regardless of inclusion shapes. The bounds for matrix/inclusion

composites are plotted in Figs. 4-5 for a ratio K,/K, = 100.

From the preceding discussion it seems clear that except for the bounds (3.6) and (3.15), the
present systematic method yields bounds for practically all conceivable classes of composite
materials.t That the bounds (3.6) and (3.15) are not contained in this general scheme was only to
be expected since their derivation stems from a different set of simplifying assumptions. More
basically, the bounds (3.6) and (3.15) involve the distinct physical principle of both bounds
remaining finite in the limit of thermally rigid inclusions or cavities. This principle, incidentally,
does not apply to any of the bounds (4.17). It is also interesting to note that all bounds for

Table 1. Summary of results

Effective
conductivity Upper bound Lower bound Relevant information
Kh K, K Conductivities: volume fractions.
K¥ (VK)o (K782 (KB, (VKR (KB, (K8 Conductivities/topology uncorrelated.
K3 (WVEK) (K™2), (K2 (WEK)R(K"™2), (K™ Cell domains.
K& 2 (VK)rK,/(VK), or s(VK)Kr/(W/K)r Matrix/inclusion composite.
Matrix/inclusion composite; inciusions
K% — (VK)RK,/(V/K), softer {on average) than matrix.
Matrix/inclusion composite; inclusions
K& (VK)Kr/(v/K)r — harder (on average) than matrix.
] . Matrix/inclusion composite; lengthy in-
K% VK),. ai>ai (VK)RK.J/K), Ic}llusnons, inclusions softer (on average)
K. a<at an matrix.
VK . Matrix/inclusion composite; lengthy in-
RS . <l-a clusions;inclusions harder (on average)
K:Z (\/K)vKR/('\/K)R K a S 1 _ a’]" lhan matrix.
* Matrix/inclusion composite; lengthy n-
clusions softer (on average) than compact
K% K, (VK&K I(\/K), inclusions and matrix.
Matrix/inclusion composite; lengthy in-
clusions harder (on average) than com-
K% (VK).Krl(v/K)r Kz pact inclusions and matrix.
(VK)>  a>af Matrix/inclusion or cellfinclusion com-
Eqn (3.15) K, posite; compact inclusions; inclusions

WKRKJVK).  ai<al

K)&’ <1-af
Eqn (3.6) (\/ )R a 1 a; KR

VK).Ke/(v/K)g a1>1 -ay

K% Kv (VEK)R(KP), (K802,
K3 (VK)o (KO7P02), (K B2 Kr
K% K. (VKR (K", (K7)g
K3 (VK). (K™, (K 77) Kr
K% (VK)o (KO0, (KB (VE)R(K ™), (K™
K% (VK (K™?), (K" 7)g (VKR (K5, (K1)

softer than matrix or cells.

Matrix/inclusion or cellfinclusion com-
posite; compact inclusions; inclusions
harder than matrix or cells.

N —M Phases of unspecified topology
containing M inclusion phases; in-
clusions softer (on average) than N - M
phases.

N - M Phases of unspecified topology
containing M inclusion phases; in-
clusions harder (on average) than N - M
phases.

Inclusion/cell composite; lengthy n-
clusions softer (on average) than compact
inclusions and cells.

Inclusion/cell composite; lengthy in-
clusions harder (on average) than com-
pact inclusions and cells.

Inclusion/cell composite; lengthy in-
clusions; inclusions softer (on average)
than cells.

Inclusion/cell composite; lengthy in-
clusions; inclusions harder (on average)
than cells.

Bn=12~tn  y,=1in

tAs has been found in-between, there exists an additional matrix of bounds, analogous to (4.17), for compact domains in
which the bounds (3.6) and (3.15) are two elements of the matrix. This will be discussed in a forthcoming paper on the effective

elastic properties.
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matrix/inclusion composites turn out to be independent of B8 or y (and thus of the order n of
the correlation functions). That this should be the case is obvious from the fact that a
matrix/inclusion structure is not disordered in the same sense as the structures belonging to the
bounds K3%(n) or K3(n). This, however, does not imply any order in the distribution of
inclusions throughout the matrix.

We remark finally, that the introduction of the hybrid composite described earlier not only
helps to identify the various classes of materials to which the bounds (4.17) belong. Rather, we
have thereby included a large number of composite materials not previously considered. As a
concrete example, we have in mind a composite that may consist entirely of cells but each cell
contains foreign impurities in the form of inclusions; as limiting cases these may be perfectly
conducting inclusions or cavities. Note also that the bounds (3.6) and (3.15) apply equally to
such composites if the inclusions are compact, since the derivation of these bounds does not
depend on the inclusions being necessarily distributed in a matrix. As a further example of such
hybrid composites, we mention the case of a matrix/inclusion structure in which each inclusion
contains an aggregate of smaller inclusions.

Due to the large number of bounds it seemed worthwhile to summarize the results in a table
as given below.

6. CONCLUSION

Although the main emphasis has been on bounding the quasi-steady state conductivities, it
should be mentioned that if the assumption of quasi-steadiness is dropped, this leads to two
enlarged (8 x 8) matrices of bounds for the conductivity and specific heat. The bounds correspond
to 64 different classes of materials. It can be shown that the enlarged number of material classes is
related to the fact that both conductivities and specific heats are now random variables. So that one
has to define a generalized material of grade (n, m) where n means “conductivities and topology
uncorrelated of grade n” and m refers to “‘conductivities and specific heats perfectly correlated of
grade m”. Note that if m < n, it cannot be inferred that both conductivities and specific heats are
uncorrelated with domain shape statistics (to nth order correlation functions). It will be shownin a
forthcoming paper that the enlarged matrices lead to bounds on both local and nonlocal effective
properties. In particular, the bounds on nonlocal properties enable the construction of dispersion
relations (diffusivity vs wave number) for each of the 64 material classes, from which nonlocal
continuum equations can be derived for each class of materials.
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